The dimension of Col A is 3, and the dimension of Nul A is 2.
The matrix A and its reduced row echelon form are as follows:
![A= \left[\begin{array}{ccc}1&3&6&-1&-12\\2&7&16&0&-20\\-3&-12&-30&2&44\\3&13&34&0&-40\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/rucofuno32acvezri1uzt0lbaisdqm1nju.png)
![rref(A)= \left[\begin{array}{ccc}1&3&6&-1&-12\\0&1&4&-1&-12\\0&0&0&1&4\\0&0&0&0&0\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/nbocd82jbuqfpeo04aiwkkpiwg5r3ttpyw.png)
Now, let's find the bases for Col A (column space) and Nul A (null space).
The columns corresponding to pivot columns in the reduced row echelon form form the basis for Col A.
![Col A= Span = \left[\begin{array}{ccc}1&3&6\\2&7&16\\-3&-12&-30\\3&13&34\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/gvx941m9o1ctnkpf2whq8btd0e6gcjkbrq.png)
To find the basis for Nul A, we solve Ax=0 for the special solutions corresponding to the free variables (columns without pivots). In this case, the fourth and fifth columns don't have pivots.
Let
and
. Then the equations from the augmented matrix are:

Solving these equations gives
and
. Thus, the null space basis is:
![Nul A=Span = \left[\begin{array}{ccc}-3&-6\\-4&-8\\1&0\\1&1\\0&-1\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/qo68oocrx07lo85a9rquz586cw3m4kvom4.png)
The dimension of Col A is 3, and the dimension of Nul A is 2.