Answer:
Explanation:
(1) see the picture
(2)

where
and





Therefore, the trigonometric polar form for (6i + 8) = 10(cos 37° + i sin 37°)
(3)
z₁ · z₂ = r₁(cosθ₁ + isinθ₁) × r₂(cosθ₂ + isinθ₂)
= r₁ · r₂ · (cosθ₁ + isinθ₁)(cosθ₂ + isinθ₂)
= r₁ · r₂ · (cosθ₁cosθ₂ + isinθ₁cosθ₂ + isinθ₂cosθ₁ + isinθ₁isinθ₂)
= r₁ · r₂ · (cosθ₁cosθ₂ + i(sinθ₁cosθ₂ + sinθ₂cosθ₁) + i²sinθ₁sinθ₂)
= r₁ · r₂ · (cosθ₁cosθ₂ - sinθ₁sinθ₂+ i(sinθ₁cosθ₂ + cosθ₁sinθ₂))
= r₁ · r₂ · (cos(θ₁ + θ₂) + i(sin(θ₁ + θ₂)))
= r₁ · r₂ · cis(θ₁ + θ₂)
(4)







