234k views
4 votes
Can someone please help me with this.

Can someone please help me with this.-example-1
User Valo
by
8.0k points

1 Answer

1 vote

Answer:

Explanation:

(1) see the picture

(2)


\boxed{z=r(cos\theta+isin\theta)}

where
r=√(Re^2+Im^2) and
tan\theta=(Im)/(Re)


r=√(8^2+6^2)


=10


tan\theta=(6)/(8)


\theta=37^o

Therefore, the trigonometric polar form for (6i + 8) = 10(cos 37° + i sin 37°)

(3)

z₁ · z₂ = r₁(cosθ₁ + isinθ₁) × r₂(cosθ₂ + isinθ₂)

= r₁ · r₂ · (cosθ₁ + isinθ₁)(cosθ₂ + isinθ₂)

= r₁ · r₂ · (cosθ₁cosθ₂ + isinθ₁cosθ₂ + isinθ₂cosθ₁ + isinθ₁isinθ₂)

= r₁ · r₂ · (cosθ₁cosθ₂ + i(sinθ₁cosθ₂ + sinθ₂cosθ₁) + i²sinθ₁sinθ₂)

= r₁ · r₂ · (cosθ₁cosθ₂ - sinθ₁sinθ₂+ i(sinθ₁cosθ₂ + cosθ₁sinθ₂))

= r₁ · r₂ · (cos(θ₁ + θ₂) + i(sin(θ₁ + θ₂)))

= r₁ · r₂ · cis(θ₁ + θ₂)

(4)


(z_1)/(z_2) =(r_1(cos\theta_1+isin\theta_1))/(r_2(cos\theta_2+isin\theta_2))


=(r_1)/(r_2) \cdot((cos\theta_1+isin\theta_1))/((cos\theta_2+isin\theta_2)) \cdot((cos\theta_2-isin\theta_2))/((cos\theta_2-isin\theta_2))


=(r_1)/(r_2) \cdot(cos\theta_1+isin\theta_1)(cos\theta_2-isin\theta_2)


=(r_1)/(r_2) \cdot(cos\theta_1cos\theta_2+isin\theta_1cos\theta_2-isin\theta_2cos\theta_1-isin\theta_1isin\theta_2)


=(r_1)/(r_2) \cdot(cos\theta_1cos\theta_2-i^2sin\theta_1sin\theta_2+i(sin\theta_1cos\theta_2-sin\theta_2cos\theta_1))


=(r_1)/(r_2) \cdot((cos\theta_1cos\theta_2+sin\theta_1sin\theta_2)+i(sin\theta_1cos\theta_2-cos\theta_1sin\theta_2))


=(r_1)/(r_2) \cdot(cos(\theta_1-\theta_2)+i(sin(\theta_1-\theta_2)))


=(r_1)/(r_2) \cdot cis(\theta_1-\theta_2)

Can someone please help me with this.-example-1
User Huwiler
by
7.5k points