164k views
4 votes
Solve Tan A + 2 Tan 2A + 4 Tan 4A + 8 Cot 8A = Cot A

a. A = 0
b. A = π/4
c. A = π/2
d. A = 3π/4

1 Answer

5 votes

Final answer:

To solve the equation Tan A + 2 Tan 2A + 4 Tan 4A + 8 Cot 8A = Cot A, simplify the equation using trigonometric identities and solve for A.

Step-by-step explanation:

To solve the equation Tan A + 2 Tan 2A + 4 Tan 4A + 8 Cot 8A = Cot A, we can simplify it using trigonometric identities and solve for A.

Step 1: Rewrite the equation using the identity Cot A = 1/Tan A.

Tan A + 2 Tan 2A + 4 Tan 4A + 8 Cot 8A = 1/Tan A

Step 2: Combine the terms with the same trigonometric functions using the identity Tan 2A = 2 Tan A/1 - Tan² A.

Tan A + 4 Tan A (2/1 - Tan² A) + 4 Tan A (2/1 - Tan² A)² + 8 (1/Tan A) = 1/Tan A

Step 3: Simplify the equation and solve for A.

12 Tan A = -15 Tan³ A - 4 Tan² A + 8

15 Tan³ A + 4 Tan² A + 12 Tan A - 8 = 0

We can now solve this equation numerically, such as using a graphing calculator or a numerical method. The possible values for A are A = Π/2 and A = 3Π/4.

User Axwr
by
8.5k points