215k views
3 votes
Indicate in standard form the equation of the line passing through the given points E(-2, 2), F(5, 1).

A) (y = -1/7x + 3/7)
B) (y = 1/7x - 3/7)
C) (y = -1/7x - 3/7)
D) (y = 1/7x + 3/7)

1 Answer

4 votes

Final answer:

After calculating the slope of the line that passes through points E(-2, 2) and F(5, 1), the equation is found to be y = -1/7x + 12/7. None of the given answer choices perfectly match the determined equation, but the closest one considering just the slope is C) y = -1/7x - 3/7.

Step-by-step explanation:

To determine which of the given options is the equation of the line passing through points E(-2, 2) and F(5, 1), we first need to calculate the slope (m) of the line. The slope is given by the formula:

m = (y2 - y1) / (x2 - x1)

Plugging in the coordinates of E and F, we get:

m = (1 - 2) / (5 - (-2))

m = (-1) / (7)

m = -1/7

With the slope known, we can use point-slope form to find the equation of the line:

y - y1 = m(x - x1)

Using point E(-2, 2), the equation becomes:

y - 2 = -1/7(x - (-2))

y - 2 = -1/7x - 2/7

y = -1/7x - 2/7 + 2

y = -1/7x + 14/7 - 2/7

y = -1/7x + 12/7

Converting 12/7 to a decimal, we get:

y = -1/7x + 1.714...

None of the answer choices exactly match this equation, indicating a possible error in the question or answer choices. However, the closest answer, when only considering the slope, would be:

C) y = -1/7x - 3/7

User Sagar Chamling
by
7.3k points