Answer:
Explanation:
To simplify the expression (10x − 2) (6x + 7) − (4x − 4) (3x – 12), we can use the distributive property and combine like terms.
Let's break it down step by step:
1. Multiply the terms inside the first set of parentheses:
(10x − 2) (6x + 7) = 60x^2 + 70x − 12x − 14
2. Multiply the terms inside the second set of parentheses:
(4x − 4) (3x – 12) = 12x^2 − 48x − 16x + 48
3. Simplify both expressions further:
60x^2 + 70x − 12x − 14 - (12x^2 − 48x − 16x + 48)
4. Distribute the negative sign to the terms inside the second set of parentheses:
60x^2 + 70x − 12x − 14 - 12x^2 + 48x + 16x - 48
5. Combine like terms:
(60x^2 - 12x^2) + (70x - 12x + 48x + 16x) - (14 - 48)
Simplifying each group of like terms separately:
48x^2 + 122x - 14 - 34
6. Combine like terms again:
48x^2 + 122x - 48
Therefore, (10x − 2) (6x + 7) − (4x − 4) (3x – 12) simplifies to 48x^2 + 122x - 48.
Please note that this is the simplified form of the expression, and further simplification may not be possible unless more information or context is provided.