The degrees of freedom for the unequal variance test is 29.
The degrees of freedom for the unequal variance t-test can be calculated using the following formula:
![[ df = \frac{{\left( \frac{{s_x^2}}{{n_x}} + \frac{{s_y^2}}{{n_y}} \right)^2}}{{\frac{{s_x^4}}{{n_x^2(n_x-1)}} + \frac{{s_y^4}}{{n_y^2(n_y-1)}}}} ]](https://img.qammunity.org/2024/formulas/mathematics/high-school/v18i7s5s9ejpii9qi51wj4v3sawf30c6lz.png)
Where:
and
are the standard deviations of the two samples
and
are the sizes of the two samples
Using the given data:
For the public agency sample:
and

For the private agency sample:
and

Substituting these values into the formula, we get:
![[ df = \frac{{\left( \frac{{835^2}}{{16}} + \frac{{1545^2}}{{18}} \right)^2}}{{\frac{{835^4}}{{16^2(16-1)}} + \frac{{1545^4}}{{18^2(18-1)}}}} ]](https://img.qammunity.org/2024/formulas/mathematics/high-school/8wllnhmgwuqjuchhfwjpt8yh5t5mekvkre.png)
![[ df \approx 29.78 ]](https://img.qammunity.org/2024/formulas/mathematics/high-school/2cogwhknxkdoi0x2jz3x1myn2mxa7pulo5.png)
Rounding down to the nearest whole number, the degrees of freedom for the unequal variance t-test is 29.
Therefore, the degrees of freedom for the unequal variance test is 29.