133k views
10 votes
Sin (3x) dx = ?
find the integral

User OIS
by
4.4k points

1 Answer

11 votes

Answer:


\displaystyle \displaystyle \int {sin(3x)} \, dx = (-cos(3x))/(3) + C

General Formulas and Concepts:

Calculus

Antiderivatives - Integrals

Integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Trig Integration:
\displaystyle \int{sin(x)} \, dx = -cos(x) + C

U-Substitution

Explanation:

Step 1: Define


\displaystyle \int {sin(3x)} \, dx

Step 2: Identify Substitution Variables

u = 3x

du = 3dx

Step 3: Integrate

  1. [Integral] Rewrite:
    \displaystyle (1)/(3)\int {3sin(3x)} \, dx
  2. [Integral] U-Substitution:
    \displaystyle (1)/(3)\int {sin(u)} \, du
  3. [Integral] Trig Integration:
    \displaystyle (1)/(3)[-cos(u)] + C
  4. [Expression] Multiply:
    \displaystyle (-cos(u))/(3) + C
  5. [Expression] Back-Substitute:
    \displaystyle (-cos(3x))/(3) + C
User Stecb
by
4.9k points