Final answer:
The binary numbers given are converted to the decimal system by calculating the sum of 2 raised to the power of each bit's position for the bits that are set to 1, starting from the right-most bit.
Step-by-step explanation:
The decimal values of each of the binary numbers interpreted as unsigned integers are calculated by summing the values of the '1' bits, where each bit represents a power of 2, depending on its position starting from the right (least significant bit).
- 1111 1111 0000 0110 - This binary number is converted to decimal as follows: (1x2^15)+(1x2^14)+(1x2^13)+(1x2^12)+(1x2^11)+(1x2^10)+(1x2^9)+(1x2^8)+(0x2^7)+(0x2^6)+(0x2^5)+(0x2^4)+(0x2^3)+(1x2^2)+(1x2^1)+(0x2^0) = 65286.
- 1111 1111 1110 1111 - In decimal, this is (1x2^15)+(1x2^14)+(1x2^13)+(1x2^12)+(1x2^11)+(1x2^10)+(1x2^9)+(1x2^8)+(1x2^7)+(1x2^6)+(1x2^5)+(0x2^4)+(1x2^3)+(1x2^2)+(1x2^1)+(1x2^0) = 65519.
- 0111 1111 1110 1111 - The decimal equivalent is (0x2^15)+(1x2^14)+(1x2^13)+(1x2^12)+(1x2^11)+(1x2^10)+(1x2^9)+(1x2^8)+(1x2^7)+(1x2^6)+(1x2^5)+(0x2^4)+(1x2^3)+(1x2^2)+(1x2^1)+(1x2^0) = 32751.
- 0101 0101 0101 0101 - This converts to (0x2^15)+(1x2^14)+(0x2^13)+(1x2^12)+(0x2^11)+(1x2^10)+(0x2^9)+(1x2^8)+(0x2^7)+(1x2^6)+(0x2^5)+(1x2^4)+(0x2^3)+(1x2^2)+(0x2^1)+(1x2^0) = 21845.