In tri-linear inequality format (accurate to one decimal place) is: 61.6 <
< 63.2.
To estimate the confidence interval for the mean reduction in systolic blood pressure
, we can use the formula:
![\[ \text{Confidence Interval} = \text{Sample Mean} \pm \text{Margin of Error} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/8zbnq85eaer9ubvgd4fa14l88qtglx8n03.png)
The margin of error is given by:
![\[ \text{Margin of Error} = Z * \frac{\text{Standard Deviation}}{\sqrt{\text{Sample Size}}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/4f2nmzrkz1j5myokryk4k7ijji16gcn9cj.png)
For a 98% confidence level, the critical z-value is approximately 2.33 (you can find this value from a standard normal distribution table or calculator).
Given values:
- Sample Mean
= 62.4
- Standard Deviation
= 14.5
- Sample Size
= 1088
- Critical z-value
for 98% confidence level ≈ 2.33
Now, plug these values into the formulas:
![\[ \text{Margin of Error} = 2.33 * (14.5)/(√(1088)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/m7j5ybvt4jy48bzt9x7k5tnziwu65p90sp.png)
Calculate the margin of error.
Then, the confidence interval is:
![\[ 62.4 \pm \text{Margin of Error} \]](https://img.qammunity.org/2024/formulas/mathematics/college/9wdq22c8oowyvujwhbo06jsnttuagrhfl1.png)
Substitute the calculated margin of error into the formula to get the confidence interval.
The final answer in tri-linear inequality format (accurate to one decimal place) is: 61.6 <
< 63.2.