506,505 views
4 votes
4 votes
Find dy/dx of the following

1) y = tan^-1(3x-x³/1-3x²) where -1/√3 < x < 1/√3​

User Klaas Van Der Weij
by
2.3k points

1 Answer

15 votes
15 votes


{ \boxed{ \purple{ \sf{ (dy)/(dx) = \frac{3}{1 + {x}^(2)}}}}}

Explanation:

Given question is,
{ \red{ \sf{y = {tan}^( - 1)( \frac{3x - {x}^(3) }{1 - 3 {x}^(2) })}}}

Put
{ \tt{x = \tan \theta }} then,


{ \tt{ \theta = { \tan}^( - 1) x}}


{ \red{ \sf{y = { \tan}^( - 1)( \frac{3 \: tan \theta - { \tan}^(3) \theta}{1 - 3 { \tan}^(2) \theta})}}}

But
{ \green{ \sf{ \tan3 \theta = \frac{3 \: \tan \theta - { \tan}^(3) \theta }{1 - 3 \: { \tan}^(2) \theta}}}}


{ \red{ \sf{y = { \tan}^( - 1) ( \tan3 \theta)}}}


{ \red{ \sf{y = 3 \theta}}}


{ \red{ \sf{y = 3}}}{ \tt{ { \tan}^( - 1) x}}


{ \red{ \sf{ (dy)/(dx) = 3 * }}}{ \tt{ \frac{1}{ {1 + x}^(2)}}}

•°•
{ \green{ \boxed{ \red{ \sf{ (dy)/(dx) = \frac{3}{1 + {x}^(2)}}}}}}

User Josip Ivic
by
3.2k points