62.7k views
17 votes
Y=sqrt(x)+7x(3/2)-5x+12

Y=sqrt(x)+7x(3/2)-5x+12-example-1

2 Answers

4 votes

Explanation:

This is the answer thank you :)

Y=sqrt(x)+7x(3/2)-5x+12-example-1
User Fernyb
by
4.0k points
7 votes

Answer:


\displaystyle y' = (21√(x))/(2) + (1)/(2√(x)) - 5

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Explanation:

Step 1: Define


\displaystyle y = √(x) + 7x^{(3)/(2)} - 5x + 12

Step 2: Differentiate

  1. Rewrite:
    \displaystyle y' = x^{(1)/(2)} + 7x^{(3)/(2)} - 5x + 12
  2. Basic Power Rule:
    \displaystyle y' = (1)/(2)x^{(1)/(2) - 1} + (3)/(2) \cdot 7x^{(3)/(2) - 1} - 1 \cdot 5x^(1 - 1)
  3. Simplify:
    \displaystyle y' = (1)/(2)x^{(-1)/(2)} + \frac{21x^{(1)/(2)}}{2} - 5
  4. Rewrite [Exponential Rule - Rewrite]:
    \displaystyle y' = \frac{1}{2x^{(1)/(2)}} + \frac{21x^{(1)/(2)}}{2} - 5
  5. Rewrite:
    \displaystyle y' = (1)/(2√(x)) + (21√(x))/(2) - 5
  6. Rearrange:
    \displaystyle y' = (21√(x))/(2) + (1)/(2√(x)) - 5
User Karlee
by
4.4k points