25.6k views
2 votes
Consider the following projectile where Vo=10 m/s angle=60 and g= 10m/s² 1 Determine the parametric equations. 2) Write the equation of trajectory. 3) Determine the maximum height. 4) Determine the range.​

User Yocasta
by
7.7k points

1 Answer

1 vote

Projectile motion with Vo = 10 m/s, θ = 60°, and g = 10 m/s² yields parametric equations x = 5t and y = 5√3t - 5t². Trajectory equation: y = √3x - 5x²/125. Max height H = 25√3/2 m. Range R = 50√3/3 m.

Projectile Motion Analysis

Given:

Initial velocity (Vo) = 10 m/s

Angle (θ) = 60°

Acceleration due to gravity (g) = 10 m/s²

1. Parametric Equations:

The horizontal (x) and vertical (y) components of the projectile's motion are given by:

x = Vo * cos(θ) * t

y = Vo * sin(θ) * t - 1/2 * g * t^2

where:

t is the time elapsed

Parametric equations obtained are:

x = 5 * t

y = 5√3 * t - 5t^2

2. Equation of Trajectory:

Eliminating t from the parametric equations, we obtain the equation of the trajectory:

y = tan(θ) * x - g * x^2 / (2 * Vo^2 * cos^2(θ))

y = √3 * x - 5x^2 / 125

3. Maximum Height:

The maximum height (H) occurs when the vertical velocity (Vy) is zero. Vy is given by:

Vy = Vo * sin(θ) - g * t

Setting Vy to zero and solving for t, we get:

t = Vo * sin(θ) / g

Substituting this value of t in the equation for y, we get the maximum height:

H = Vo^2 * sin^2(θ) / (2 * g)

H = 25√3 / 2 m

4. Range:

The range (R) is the horizontal distance traveled by the projectile when it hits the ground. This occurs when y = 0. Solving the equation for y for t:

t = (2 * Vo * sin(θ)) / g

Substituting this value of t in the equation for x, we get the range:

R = Vo^2 * sin(2θ) / g

R = 50√3 / 3 m

User Vilda
by
7.6k points