The matrix C of the composition T∘S is:
![C=\left[\begin{array}{ccc}-6\\-4\\9\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/93jwx0q1i1vnly3hha0lwsslppj7v57qcy.png)
To find the matrix C of the composition T∘S, where S is a linear transformation from R3 to R2 and T is a linear transformation from R2 to, we use the matrix multiplication.
Given the matrices:
![A=\left[\begin{array}{ccc}2&1&-2\\-3&-2&-3\\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/cbtweiaqikv212i45ygbxvf6wq3f4196hx.png)
and
![B=\left[\begin{array}{ccc}3&-3\\22&0\\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/rdhjcsyq3by54u9kojdd55o5fvjw5qm66a.png)
The matrix C is obtained by multiplying matrix B with matrix A:
C=B⋅A
Performing the matrix multiplication:
![C=\left[\begin{array}{ccc}2&1&-2\\-3&-2&-3\\\end{array}\right].\left[\begin{array}{ccc}3&-3\\22&0\\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/idnq7zp1l7pxq42pwyo738b507cuva3533.png)
C=[ (−2⋅3+1⋅(−3)+(−2)⋅(−3))(22⋅3+0⋅(−3)) (−2⋅(−2)+1⋅(−2)+(−2)⋅(−3)(22⋅(−2)+0⋅(−2)) ]
![C=\left[\begin{array}{ccc}-6&-4\\66&-44\\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/mm1liqbsus64sxgalh57c9ps4prof5xa07.png)
Therefore, the matrix C is:
![C=\left[\begin{array}{ccc}-6\\-4\\9\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/93jwx0q1i1vnly3hha0lwsslppj7v57qcy.png)