Final answer:
To find the values of cos angle and tan angle, substitute the given sin value into the Pythagorean identity and solve for cos angle. Then, use the identity tan(angle) = sin(angle) / cos(angle) to find the value of tan angle.
Step-by-step explanation:
To find the values of cos angle and tan angle, we can use the Pythagorean identity:
= 1. Given that sin(angle) = 3/5, we can substitute this value into the equation:
= 1
Simplifying the equation, we get:

To solve for cos angle, we subtract 9/25 from both sides and take the square root:
cos(angle) = √(1 - 9/25) = √(16/25) = 4/5
To find the value of tan angle, we can use the identity: tan(angle) = sin(angle) / cos(angle). Substituting the values, we get:
tan(angle) = (3/5) / (4/5) = 3/4