The expression simplifies to
. In the form
, the product of a, b, and c is
.
Let's simplify the given expression:
![\[ \frac{\sqrt[3]{27xy^3}}{5x^(4/3)y^2} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/2hjakev5i5q9ggh9jvqmmdunqr4so4rsfd.png)
First, simplify the numerator:
![\[ \sqrt[3]{27xy^3} = \sqrt[3]{3^3 \cdot (xy^3)} = 3\sqrt[3]{xy^3} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/y64fzsaiyi0aqcdc3g6qicrui0aqmdso11.png)
Now substitute this back into the original expression:
![\[ \frac{3\sqrt[3]{xy^3}}{5x^(4/3)y^2} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pxe3r1k576h6b7xzwiff94j68o1g3l1rbs.png)
Now, let's simplify the expression further. Combine the terms in the numerator and simplify the exponents:
![\[ (3x^(1/3)y)/(5x^(4/3)y^2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/y0yce5z2jdaxhunb5exai5wj2qpigd1vei.png)
Combine the x terms by subtracting the exponents:
![\[ (3)/(5) \cdot (1)/(x^(4/3-1/3)) \cdot (y)/(y^2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/vxr9hix3xbxtiqwlqwabvb55w2qugy3swt.png)
Simplify the exponents:
![\[ (3)/(5) \cdot (1)/(x) \cdot (1)/(y) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/kn0kxlecgq1cs4s7akdfyve2bbkt7xat99.png)
Now, write this expression in the form
:
![\[ (3)/(5xy) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/a0y7j45w1ufxyasvwcqk97sqa4ly74vuls.png)
Now, compare this with the desired form
:
![\[ a = (3)/(5), \quad b = -1, \quad c = -1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/k51cia88v4hmnztq5h0qjxqt1yjo0mxwux.png)
The product of a, b, and c is:
![\[ abc = (3)/(5) \cdot (-1) \cdot (-1) = (3)/(5) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/g4mj7amnocpg89gj8afax4qzy95aybnaz0.png)