Final answer:
To evaluate the definite integral ∫ 7 sin^6(8x) dx, use the table of integrals and apply a trigonometric identity to simplify the function. Then integrate the simplified function to obtain the result.
Step-by-step explanation:
To evaluate the definite integral ∫ 7 sin6(8x) dx, we can use the table of integrals.
The integral can be expressed as:
∫ sin6(8x) dx
Using the trigonometric identity sin2(x) = (1 - cos(2x))/2, we can reduce the power of sin from 6 to 2.
Substituting this identity and simplifying, we have:
∫ (7/32) * (1 - cos(16x)) dx
Integrating, we get:
= (7/32) * (x - (1/16) * sin(16x)) + c
Therefore, the evaluated definite integral is (7/32) * (x - (1/16) * sin(16x)) + c.