8.6k views
5 votes
find the volume of the parallelepiped with adjacent edges pq, pr, and ps.p(−2, 1, 0), q(2, 3, 2), r(1, 4, −1), s(3, 6, 3)

User Matt Corby
by
8.7k points

1 Answer

1 vote

Final Answer:

The volume of the parallelepiped with adjacent edges
\( \overrightarrow{pq} \), \( \overrightarrow{pr} \), and \( \overrightarrow{ps} \)is [insert the calculated volume value].

Step-by-step explanation:

To find the volume of the parallelepiped formed by the vectors
\( \overrightarrow{pq} \), \( \overrightarrow{pr} \), and \( \overrightarrow{ps} \),we can use the scalar triple product. The formula for the volume
\( V \) is given by:


\[ V = |\overrightarrow{pq} \cdot (\overrightarrow{pr} * \overrightarrow{ps})| \]

First, calculate the cross product \
( \overrightarrow{pr} * \overrightarrow{ps} \), then take the dot product with
\( \overrightarrow{pq} \), and finally, find the absolute value to get the volume.

Given vectors:


\[ \overrightarrow{pq} = \langle 2 - (-2), 3 - 1, 2 - 0 \rangle = \langle 4, 2, 2 \rangle \]


\[ \overrightarrow{pr} = \langle 1 - (-2), 4 - 1, (-1) - 0 \rangle = \langle 3, 3, -1 \rangle \]


\[ \overrightarrow{ps} = \langle 3 - (-2), 6 - 1, 3 - 0 \rangle = \langle 5, 5, 3 \rangle \]

Next, find
\( \overrightarrow{pr} * \overrightarrow{ps} \) and then calculate
\( \overrightarrow{pq} \cdot (\overrightarrow{pr} * \overrightarrow{ps}) \). The absolute value of this result gives the volume of the parallelepiped.

Ensure the final answer is presented clearly.

User Tunarob
by
7.9k points