Final answer:
To find the composite function (g°f)(x), substitute f(x) into g(x), resulting in the composite function 64x¹⁰ - 16x⁵.
Step-by-step explanation:
To find the composite function (g°f)(x), you need to first apply the function f to x, and then apply the function g to the result of f(x). Given the functions f(x) = 4x⁵ and g(x) = 4x² - 4x, we start by computing f(x).
First, find f(x):
Next, substitute f(x) into g(x):
- g(f(x)) = g(4x⁵) = 4(4x⁵)² - 4(4x⁵)
Simplify the expression:
- g(f(x)) = 4(16x¹⁰) - 4(4x⁵)
- g(f(x)) = 64x¹⁰ - 16x⁵
So the composite function (g°f)(x) is 64x¹⁰ - 16x⁵.