Final answer:
To find the partial derivatives of z with respect to s, t, and u, we need to apply the chain rule. The partial derivatives are ∂z/∂s = 32, ∂z/∂t = -4, and ∂z/∂u = -32 when s = 1, t = 2, and u = 4.
Step-by-step explanation:
To find the partial derivatives of z with respect to s, t, and u, we need to apply the chain rule. Let's start by finding ∂z/∂s:
∂z/∂s = (∂z/∂x) * (∂x/∂s)
∂z/∂s = (4x³ * x²y) * (2st)
∂z/∂s = 8x⁵ * sty
Now, let's find ∂z/∂t:
∂z/∂t = (∂z/∂x) * (∂x/∂t)
∂z/∂t = (4x³ * x²y) * (s² - u)
∂z/∂t = 4x³ * x²y * (s² - u)
Finally, let's find ∂z/∂u:
∂z/∂u = (∂z/∂x) * (∂x/∂u)
∂z/∂u = (4x³ * x²y) * (-1)
∂z/∂u = -4x³ * x²y
For s = 1, t = 2, and u = 4, we substitute these values into the partial derivatives to evaluate them.
∂z/∂s = 8(1⁵) * (1 * 2 * 2) = 32
∂z/∂t = 4(1³) * (1² * 2 * 2 - 4) = -4
∂z/∂u = -4(1³) * (1² * 2 * 2) = -321