Final answer:
To find the partial derivatives, use the chain rule and substitute the given values of s, t, and u into the expressions.
Step-by-step explanation:
To find the partial derivatives, we first need to calculate the derivatives of z with respect to x and y. Using the chain rule, we have:
∂z/∂x = ∂z/∂x * dx/dx + ∂z/∂y * dy/dx
∂z/∂y = ∂z/∂x * dx/dy + ∂z/∂y * dy/dy
∂z/∂s = (∂z/∂x * dx/ds) + (∂z/∂y * dy/ds)
∂z/∂t = (∂z/∂x * dx/dt) + (∂z/∂y * dy/dt)
∂z/∂u = (∂z/∂x * dx/du) + (∂z/∂y * dy/du)
Substituting the given values s = 4, t = 3, u = 2 into the expressions for ∂z/∂s, ∂z/∂t, and ∂z/∂u will give us the final answers.