Final answer:
The direction cosines of the vector (3, 1, 2) are cos(α) = 3 / √14, cos(β) = 1 / √14, and cos(γ) = 2 / √14. The direction angles are α ≈ 53.1°, β ≈ 29.3°, and γ ≈ 67.8°.
Step-by-step explanation:
To find the direction cosines and direction angles of a vector, we use the formulas:
Direction cosines:
cos(α) = x / √(x^2 + y^2 + z^2)
cos(β) = y / √(x^2 + y^2 + z^2)
cos(γ) = z / √(x^2 + y^2 + z^2)
Direction angles:
α = arccos(x / √(x^2 + y^2 + z^2))
β = arccos(y / √(x^2 + y^2 + z^2))
γ = arccos(z / √(x^2 + y^2 + z^2))
For the vector (3, 1, 2), we have:
x = 3, y = 1, z = 2
cos(α) = 3 / √(3^2 + 1^2 + 2^2) = 3 / √14
cos(β) = 1 / √(3^2 + 1^2 + 2^2) = 1 / √14
cos(γ) = 2 / √(3^2 + 1^2 + 2^2) = 2 / √14
α = arccos(3 / √(3^2 + 1^2 + 2^2)) ≈ 53.1°
β = arccos(1 / √(3^2 + 1^2 + 2^2)) ≈ 29.3°
γ = arccos(2 / √(3^2 + 1^2 + 2^2)) ≈ 67.8°