The horizontal acceleration of the ball upon release is

The force exerted by the spring (
) can be calculated using Hooke's Law:
![\[ F_s = k \cdot \Delta x \]](https://img.qammunity.org/2024/formulas/physics/college/pa4zhqwokab1ia51lsembov9lxlnbu0dum.png)
Where:
- k is the spring constant (1000 N/m),
-
is the compression of the spring (0.01 m).
![\[ F_s = (1000 \, \text{N/m}) \cdot (0.01 \, \text{m}) = 10 \, \text{N} \]](https://img.qammunity.org/2024/formulas/physics/college/zt3r6v5u02hrfpmwd3c86b0n4ex9g53fow.png)
Now, using Newton's second law (
), we can find the acceleration (a) of the ball:
![\[ F = m \cdot a \]](https://img.qammunity.org/2024/formulas/physics/high-school/pl3c77v13p8vxnixg5jyp875bz6xjmaxrh.png)
![\[ 10 \, \text{N} = (0.1 \, \text{kg}) \cdot a \]](https://img.qammunity.org/2024/formulas/physics/college/oilz9il3qlbo29wcgacnv47sujzljevv1g.png)
![\[ a = \frac{10 \, \text{N}}{0.1 \, \text{kg}} = 100 \, \text{m/s}^2 \]](https://img.qammunity.org/2024/formulas/physics/college/ft86bolpg4h1q70nqkzyfanw4r7dl6poem.png)
So, the horizontal acceleration of the ball upon release is
