62.2k views
4 votes
Write a polynomial function in factored form w zeros at 1,-3,4,0

User MoonHorse
by
9.0k points

1 Answer

5 votes

Final answer:

A polynomial function in factored form with zeros at 1, -3, 4, and 0 is represented as x(x - 1)(x + 3)(x - 4). These factors correspond to the respective zeros when they are set equal to zero, which generates the zeros of the function.

Step-by-step explanation:

To write a polynomial function in factored form with zeros at 1, -3, 4, and 0, you need to use these zeros to create factors of the polynomial. Each zero corresponds to a factor that when set equal to zero, gives you the zero of the function. For example, if you have a zero at x = 1, the corresponding factor would be (x - 1). Similarly, for a zero at x = -3, the factor is (x + 3) because (x + 3) = 0 implies x = -3.

Since there is also a zero at x = 4, we include the factor (x - 4), and for the zero at x = 0, the factor is simply x. Thus, the polynomial in factored form that has these zeros is x(x - 1)(x + 3)(x - 4). To represent this function in standard polynomial form, you would expand these factors, however, the question specifically asks for the function in factored form.

User Corby Page
by
8.1k points

No related questions found