Final answer:
The edge length of the cube of uranium is approximately 75 g.
The correct answer is B) 75 g.
Step-by-step explanation:
The heat gained by the deuterium oxide (D₂O) equals the heat lost by the uranium. The formula for heat transfer Q is given by:
![\[ Q = mc\Delta T \]](https://img.qammunity.org/2024/formulas/physics/high-school/viivvm5fwe6r8lu77r18zmjvcc3t5mezpa.png)
Where:
is the mass of the substance,
is the specific heat capacity, and
is the change in temperature.
For uranium, the heat lost
is:
![\[ Q_{\text{U}} = m_{\text{U}}c_{\text{U}}\Delta T_{\text{U}} \]](https://img.qammunity.org/2024/formulas/physics/high-school/5q78onfev20zna16mwo5ak746tfrlskaeb.png)
For deuterium oxide, the heat gained
is:
![\[ Q_{\text{D₂O}} = m_{\text{D₂O}}c_{\text{D₂O}}\Delta T_{\text{D₂O}} \]](https://img.qammunity.org/2024/formulas/physics/high-school/lgvkvk0c75xmbznij4k8uwo7nfic3m8lxv.png)
Since
, we can set the two expressions equal to each other:
![\[ m_{\text{U}}c_{\text{U}}\Delta T_{\text{U}} = m_{\text{D₂O}}c_{\text{D₂O}}\Delta T_{\text{D₂O}} \]](https://img.qammunity.org/2024/formulas/physics/high-school/4u6ifegfz15j5rg1yyvasuog74b2a74hwj.png)
Solving for the mass of uranium
:
![\[ m_{\text{U}} = \frac{m_{\text{D₂O}}c_{\text{D₂O}}\Delta T_{\text{D₂O}}}{c_{\text{U}}\Delta T_{\text{U}}} \]](https://img.qammunity.org/2024/formulas/physics/high-school/bjtqn7u1y7wo1t1byuunu5uhj7vzqpvpop.png)
Substituting the given values and solving:
![\[ m_{\text{U}} = \frac{(1000 \, \text{g})(4.211 \, \text{J/C-g})(28.5 \, \text{°C} - 25.5 \, \text{°C})}{(0.117 \, \text{J/C-g})(200.0 \, \text{°C} - 28.5 \, \text{°C})} \]](https://img.qammunity.org/2024/formulas/physics/high-school/oi2dh3ysm30bo8b4hdu7gf34x8srq2z0j1.png)
![\[ m_{\text{U}} \approx 75 \, \text{g} \]](https://img.qammunity.org/2024/formulas/physics/high-school/kvtx786juifobe38didrv2m047m60cgu2m.png)
Therefore, the edge length of the cube of uranium is approximately 75 g. Hence, the correct answer is B) 75 g.