Final answer:
The equation in standard form to represent the total rent (y) that Max has to pay for renting the motorbike for x days is y = 93x - 26.
Step-by-step explanation:
To find an equation that represents the total rent (y) that Max has to pay for renting the motorbike for x days, we need to analyze the given information. We know that Max rented the motorbike for 5 days at a cost of $465, and if he rents it for a week (7 days), the total rent is $625.
Let's use the information for the 5-day rental (x=5) to find the cost per day. We can divide the total cost by the number of days: $465 ÷ 5 = $93.
Now we can use this information and the given total rent for a 7-day rental to set up an equation. Since the cost per day is $93, we can express the total rent for x days as:
y = mx + b, where m is the cost per day and b is the extra cost for the up-front fee.
y = 93x + b = 93(7) + b = 651 + b.
We are given that the total rent for a 7-day rental is $625, so we can set up an equation:
625 = 651 + b.
To solve for b, we can subtract 651 from both sides:
b = 625 - 651 = -26.
Now we have the value of b, and we can write the equation in standard form:
y = 93x - 26.