A) The solution for the given recurrence relation is (-2)^n with a_0 = -1. B) The solution for the given recurrence relation is (-1)^n with a_0 = 2 and a_1 = -1. C) The solution for the given recurrence relation is 3^n with a_0 = 1. D) The solution for the given recurrence relation is (-1)^n n with a_0 = -1 and a_1 = 0. E) The solution for the given recurrence relation is 1 for all n with a_0 = 1, a_1 = 1, and a_2 = 2.
Let's solve each recurrence relation step by step:
a) an = -2an-1, a0 = -1
Substituting the given values, we have:
a1 = -2a0 = -2(-1) = 2
a2 = -2a1 = -2(2) = -4
a3 = -2a2 = -2(-4) = 8
a4 = -2a3 = -2(8) = -16
a5 = -2a4 = -2(-16) = 32
a6 = -2a5 = -2(32) = -64
b) an = an-1 - an-2, a0 = 2, a1 = -1
Substituting the given values, we have:
a2 = a1 - a0 = -1 - 2 = -3
a3 = a2 - a1 = -3 - (-1) = -2
a4 = a3 - a2 = -2 - (-3) = 1
a5 = a4 - a3 = 1 - (-2) = 3
a6 = a5 - a4 = 3 - 1 = 2
c) an = 3a2n-1, a0 = 1
Substituting the given value, we have:
a1 = 3a2(0) = 3(1) = 3
a2 = 3a2(1) = 3(3) = 9
a3 = 3a2(2) = 3(9) = 27
a4 = 3a2(3) = 3(27) = 81
a5 = 3a2(4) = 3(81) = 243
a6 = 3a2(5) = 3(243) = 729
d) an = nan-1 + a2n-2, a0 = -1, a1 = 0
Substituting the given values, we have:
a2 = 2a1 + a2(0) = 2(0) + (-1) = -1
a3 = 3a2 + a22 = 3(-1) + (-1)(-1) = -2
a4 = 4a3 + a24 = 4(-2) + (-2)(-2) = -4
a5 = 5a4 + a25 = 5(-4) + (-4)(-4) = -4
a6 = 6a5 + a26 = 6(-4) + (-4)(-4) = -8
e) an = an-1 - an-2 + an-3, a0 = 1, a1 = 1, a2 = 2
Substituting the given values, we have:
a3 = a2 - a1 + a0 = 2 - 1 + 1 = 2
a4 = a3 - a2 + a1 = 2 - 2 + 1 = 1
a5 = a4 - a3 + a2 = 1 - 2 + 2 = 1
a6 = a5 - a4 + a3 = 1 - 1 + 2 = 2