3.6k views
4 votes
Specila function values fing the value of cos(3-i)

User Cftarnas
by
7.3k points

1 Answer

2 votes

The value of
\(\cos(3 - i)\) is
\((3√(10))/(10)\) after expressing 3 - i in polar form using Euler's formula and rationalizing the denominator.

To find the cosine of a complex number, you can use Euler's formula:
\(e^(ix) = \cos(x) + i\sin(x)\).

Let's express 3 - i in polar form:


\[ r = √(3^2 + (-1)^2) = √(10) \]\\ \theta = \arctan\left((-1)/(3)\right) \]

Now, substitute these values into Euler's formula:


\[ 3 - i = √(10) \cdot \cos(\theta) + i√(10) \cdot \sin(\theta) \]

Since
\(\cos(\theta) = (3)/(√(10))\) and \(\sin(\theta) = -(1)/(√(10))\), we get:


\[ 3 - i = √(10) \left((3)/(√(10)) + i\left(-(1)/(√(10))\right)\right) \]

Now, extract the real part:


\[ \cos(3 - i) = (3)/(√(10)) \]

Rationalize the denominator:


\[ \cos(3 - i) = (3√(10))/(10) \]

User Gps
by
8.1k points