The value of
is
after expressing 3 - i in polar form using Euler's formula and rationalizing the denominator.
To find the cosine of a complex number, you can use Euler's formula:
.
Let's express 3 - i in polar form:
![\[ r = √(3^2 + (-1)^2) = √(10) \]\\ \theta = \arctan\left((-1)/(3)\right) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/v651d658dyhj08q3f8lyps3onzkiucd791.png)
Now, substitute these values into Euler's formula:
![\[ 3 - i = √(10) \cdot \cos(\theta) + i√(10) \cdot \sin(\theta) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/13ii8asjn2xf5ntpr5vi7mj35xgcr5kihg.png)
Since
, we get:
![\[ 3 - i = √(10) \left((3)/(√(10)) + i\left(-(1)/(√(10))\right)\right) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/rt9zvrhtwx5t9edlit5318zqx034f5kxn2.png)
Now, extract the real part:
![\[ \cos(3 - i) = (3)/(√(10)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/2lbt876nxu9yk8t2lu5uj7o8n5jb5ssb2l.png)
Rationalize the denominator:
![\[ \cos(3 - i) = (3√(10))/(10) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/fybpy5iwlny44klxeevoau6rhlq29taso9.png)