Final answer:
To evaluate the integral ∫(17(x - 1)(x² + 16)) dx, expand and distribute the expression. Then, integrate each term individually and apply the power rule for integration to simplify the expression.
Step-by-step explanation:
To evaluate the integral ∫(17(x - 1)(x² + 16)) dx, we need to expand the expression and distribute.
Step 1: Distribute 17 into (x - 1)(x² + 16):
∫(17x³ + 272x - 17x² - 272) dx
Step 2: Integrate each term individually:
∫17x³ dx + ∫272x dx - ∫17x² dx - ∫272 dx
Step 3: Apply the power rule for integration:
&frac;17×&frac;14x⁴ + &frac;272×&frac;12x² - &frac;17×&frac;13x³ - 272x + C
Simplifying the expression: &frac;221×x⁴ + 136x² - &frac;17×x³ - 272x + C