Final answer:
Now, we use the ideal gas law: P = (nRT) / V. The ideal gas constant R is 0.0821 L·atm/(K·mol), so P = (0.0556 mol × 0.0821 L·atm/(K·mol) × 300.7 K) / 6.00 L. Calculating this, we get P = 0.229 atm for the partial pressure of BF3, which corresponds to option B.
Step-by-step explanation:
To find the partial pressure of boron trifluoride (BF3), we can use the ideal gas law in the form of PV=nRT, where P is pressure, V is volume, n is the number of moles, R is the ideal gas constant, and T is temperature in Kelvin. First, we convert the temperature to Kelvin by adding 273 to the Celsius temperature: 27.7°C + 273 = 300.7 K. Next, we calculate the number of moles of BF3 by using its molar mass (67.81 g/mol). The number of moles is the mass (3.77 g) divided by the molar mass: 3.77 g / 67.81 g/mol = 0.0556 mol.
To calculate the partial pressure of boron trifluoride gas, we use the ideal gas law, converting the temperature to Kelvin, determining the moles of the gas, and inserting the values into the equation. The result is a partial pressure of 0.229 atm.