The 99% confidence interval for the mean diameter is (0.9845, 1.0267), the prediction interval for a single measurement is (0.9839, 1.0273), and the tolerance limits for 95% of pieces are (0.9574, 1.0538).
a. 99% Confidence Interval on the Mean Diameter:
The formula for a confidence interval is given by:
![\[ \text{Confidence Interval} = \bar{x} \pm Z \left( (s)/(√(n)) \right) \]](https://img.qammunity.org/2024/formulas/mathematics/college/nml340y2rsxhvx3tuzefcpcy3s180nnfwq.png)
For a 99% confidence interval, the Z-score is approximately 2.576 (assuming a normal distribution). Therefore,
![\[ \text{Confidence Interval} = 1.0056 \pm 2.576 \left( (0.0246)/(√(9)) \right) \]\[ \text{Confidence Interval} = 1.0056 \pm 2.576 \left( (0.0246)/(3) \right) \]\[ \text{Confidence Interval} = 1.0056 \pm 2.576 * 0.0082 \]\[ \text{Confidence Interval} = (1.0056 - 0.0211, 1.0056 + 0.0211) \]\[ \text{Confidence Interval} = (0.9845, 1.0267) \]](https://img.qammunity.org/2024/formulas/mathematics/college/2myky0et0lqx1x89pb54wzqg0clos9nnkn.png)
b. 99% Prediction Interval on a Measured Diameter:
The formula for a prediction interval is given by:
![\[ \text{Prediction Interval} = \bar{x} \pm Z \left( (s)/(√(n)) \right) * \sqrt{1 + (1)/(n)} \]\[ \text{Prediction Interval} = 1.0056 \pm 2.576 \left( (0.0246)/(3) \right) * \sqrt{1 + (1)/(9)} \]](https://img.qammunity.org/2024/formulas/mathematics/college/2gnrzdh6dh4xpmcf8ee135jwlb5l81r7yt.png)
![\[ \text{Prediction Interval} = 1.0056 \pm 2.576 * 0.0082 * \sqrt{(10)/(9)} \]\[ \text{Prediction Interval} = 1.0056 \pm 2.576 * 0.0082 * 1.0541 \]\[ \text{Prediction Interval} = (1.0056 - 0.0217, 1.0056 + 0.0217) \]\[ \text{Prediction Interval} = (0.9839, 1.0273) \]](https://img.qammunity.org/2024/formulas/mathematics/college/j5ssswtadsgkwjsm6otop2k90dzko92acm.png)
c. 99% Tolerance Limits for 95% of Metal Pieces:
For 95% of the metal pieces, the factor k is approximately 1.959 (assuming a normal distribution). Therefore,
![\[ \text{Tolerance Limits} = 1.0056 \pm 1.959 * 0.0246 \]\[ \text{Tolerance Limits} = 1.0056 \pm 1.959 * 0.0246 \]\[ \text{Tolerance Limits} = (1.0056 - 0.0482, 1.0056 + 0.0482) \]\[ \text{Tolerance Limits} = (0.9574, 1.0538) \]](https://img.qammunity.org/2024/formulas/mathematics/college/l101afgnmlbewmpeblhf7dejc5qqedu9sj.png)
Therefore:
a. The 99% confidence interval on the mean diameter is (0.9845, 1.0267).
b. The 99% prediction interval on a measured diameter is (0.9839, 1.0273).
c. The 99% tolerance limits for 95% of metal pieces are (0.9574, 1.0538).