83.6k views
0 votes
lim X→∞ (x+1)2007 +(x+2)2007 +(x+3)2007 +.....+(x+2007)2007 (x+2005)2007 +(x+2006)2007 +(x+2007)2007​

User DEzra
by
8.2k points

1 Answer

3 votes
To evaluate the limit \(\lim_{x \to \infty}\) of the given expression, let's analyze the terms:

\[
\begin{align*}
& (x+1)^{2007} + (x+2)^{2007} + \ldots + (x+2007)^{2007} \\
& \quad - \left((x+2005)^{2007} + (x+2006)^{2007} + (x+2007)^{2007}\right)
\end{align*}
\]

We can simplify this by factoring out the common factor of \((x+2007)^{2007}\) from the first set of terms:

\[
\begin{align*}
& (x+2007)^{2007} \left(\frac{(x+1)^{2007}}{(x+2007)^{2007}} + \frac{(x+2)^{2007}}{(x+2007)^{2007}} + \ldots + 1\right) \\
& \quad - (x+2007)^{2007} \left(\frac{(x+2005)^{2007}}{(x+2007)^{2007}} + \frac{(x+2006)^{2007}}{(x+2007)^{2007}} + 1\right)
\end{align*}
\]

Now, observe that as \(x\) approaches infinity, the dominant term in each fraction is \(1\). Therefore, the limit simplifies to:

\[
\lim_{x \to \infty} (x+2007)^{2007} \left(1 - 1\right) = 0
\]

So, \(\lim_{x \to \infty} \left((x+1)^{2007} + \ldots + (x+2007)^{2007} - (x+2005)^{2007} - (x+2006)^{2007} - (x+2007)^{2007}\right) = 0\).
User Ivan Rubinson
by
8.2k points