In a 30-60-90 right triangle, the side lengths are in a specific ratio: 1:√3:2. Given that the hypotenuse corresponds to the 60 degrees angle and has a length of 10 units, we can use this information to find the lengths of the other sides.
Let x be the shorter leg (opposite the 30 degrees angle) and y be the longer leg (opposite the 60 degrees angle).
The ratio for a 30-60-90 triangle is:
![\[ \text{Shorter leg} : \text{Hypotenuse} : \text{Longer leg} = 1 : √(3) : 2 \]](https://img.qammunity.org/2024/formulas/geography/high-school/mh1xnwrb2wr4i0ubt52dg77t7lv8lx3ngb.png)
So, in this case:
![\[ x : 10 : y = 1 : √(3) : 2 \]](https://img.qammunity.org/2024/formulas/geography/high-school/69g1jehd0rsf5iel36sq6gq2adld24r10h.png)
To find x and y, we can set up equations:
![\[ x = (1)/(√(3)) * 10 \]](https://img.qammunity.org/2024/formulas/geography/high-school/ymevblrcnexhopf8j5111t0klndrz9lute.png)
![\[ y = 2 * 10 \]](https://img.qammunity.org/2024/formulas/geography/high-school/7moq0dm8ivw49ciqttswao5g8lo3i7h2lz.png)
Simplifying these expressions gives:
![\[ x = (10)/(√(3)) \]](https://img.qammunity.org/2024/formulas/geography/high-school/by0oklbedsg5c60ra2exy2ujg2999guvk0.png)
![\[ y = 20 \]](https://img.qammunity.org/2024/formulas/geography/high-school/o0ow2sj96uh4q9f1xq6csj2y1f0nypdjyi.png)
Therefore, the exact values are
units and y = 20 units.