51,715 views
31 votes
31 votes
Please helpppp

This probability distribution shows the
typical grade distribution for a Geometry
course with 35 students.
Grade
A
B
С
D
F
Frequency 5
10
15
3
2
Find the probability that a student earns a w
grade of B or C.
p = [?]
Enter a decimal rounded to the nearest hundredth.
Enter

Please helpppp This probability distribution shows the typical grade distribution-example-1
User Shabda
by
2.8k points

1 Answer

13 votes
13 votes


\huge{ \fbox \color{cyan}{Answer}}


\tt \implies \: P \: \rightarrow \: 0.71 \\ \\ \\ \tt \: \: \: { \underline { \green{Solution}}} :


\tt \bf \: \: Given : \: \: Grade \: \: \: \: \: \: \: frequency


\therefore \tt Total \: \: number \: \: of \: \: students \: \: are \: \: 35


\tt \bf \underline{ATQ} : A \: \: student \: \: earn \: \: a \: \: Grade \: \: of \: \: B \: or \: C \:


\tt \rightarrow \: Grade \: B \: + \: Grade \: C \: \: = 10 + 15 = 25


\sf \: \text{\blue{ Apply formula}} :


\tt \: \circ \: Probability =( (number \: of \: favourable \: outcome)/(total \: number \: of \: outcomes) )


\tt \: \rightarrow \: p(grade \: \: b \: \: or \: \: c) = \cancel (25)/(35) = \cancel (5)/(7) = 0.714


\tt \: round \: to \: nearest \: \: hunderath


\tt \bf \implies \: \fbox{ \pink{0.71}}

User Tom Murley
by
3.0k points