199k views
4 votes
Find the middle term in the expansion of (2/x – x^2)^6.​

User Adrilz
by
6.3k points

1 Answer

5 votes

Answer:

The middle term is
-160x^(3)

Explanation:

Given


((2)/(x) - x^2)^6

Required

Determine the middle term

This can be expanded using binomial expansion

i.e.


(a + b)^n = a^n + ^nC_1a^(n-1)b^1 + ^nC_2a^(n-2)b^2 +....+b^n

When n = 6;


(a + b)^6 = a^6 + ^6C_1a^(6-1)b^1 + ^6C_2a^(6-2)b^2 + ^6C_3a^(6-3)b^3+ ^6C_4a^(6-4)b^4+ ^6C_5a^(6-5)b^5+b^n


(a + b)^6 = a^6 + ^6C_1a^(5)b^1 + ^6C_2a^(4)b^2 + ^6C_3a^(3)b^3+ ^6C_4a^(2)b^4+ ^6C_5a^(1)b^5+b^6


(a + b)^6 = a^6 + ^6C_1a^(5)b + ^6C_2a^(4)b^2 + ^6C_3a^(3)b^3+ ^6C_4a^(2)b^4+ ^6C_5ab^5+b^6

The middle term here is given as:


(a + b)^6 = ^6C_3a^(3)b^3

In
((2)/(x) - x^2)^6


a = (2)/(x) and
b = -x^2

This gives:


((2)/(x) - x^2)^6 = ^6C_3((2)/(x))^(3)(-x^2)^3


((2)/(x) - x^2)^6 = 20*((2)/(x))^(3)(-x^2)^3

Solve all exponents


((2)/(x) - x^2)^6 = 20*(8)/(x^3)*(-x^6)


((2)/(x) - x^2)^6 = -(20*8*x^6)/(x^3)


((2)/(x) - x^2)^6 = -160*x^(6-3)


((2)/(x) - x^2)^6 = -160*x^(3)


((2)/(x) - x^2)^6 = -160x^(3)

Hence, the middle term is
-160x^(3)

User Kwoodson
by
6.0k points