53.1k views
0 votes
Expand using the Binomial Theorem to write the expansion of (2a-4b)^(5)

1 Answer

2 votes

Final answer:

The expansion of (2a-4b)^5 using the Binomial Theorem results in 32a^5 - 320a^4b + 1280a^3b^2 - 2560a^2b^3 + 2560ab^4 - 1024b^5.

Step-by-step explanation:

The process of expanding (2a-4b)^5 using the Binomial Theorem involves summing up the series expansion terms where each term is a product of a binomial coefficient and the corresponding powers of 2a and -4b.

The Binomial Theorem states in general that:

(a + b)^n = a^n + n(a^(n-1))b + n(n-1)/2! (a^(n-2))b^2 + n(n-1)(n-2)/3! (a^(n-3))b^3 + ...

Applying this to (2a-4b)^5 gives:

(2a)^5 + 5((2a)^4)(-4b) + 10((2a)^3)(-4b)^2 + 10((2a)^2)(-4b)^3 + 5(2a)(-4b)^4 + (-4b)^5

Which simplifies to:

  • 32a^5
  • -320a^4b
  • +1280a^3b^2
  • -2560a^2b^3
  • +2560ab^4
  • -1024b^5

User Sven Hasselbach
by
7.8k points