15.7k views
0 votes
Evaluate the line integral ∫_C ((2xy - z^2)i + (x^2 + 2z)j + (2y - 2xz)k) · dr, where C is a simple curve from A(-3,...).

1 Answer

4 votes

Final answer:

To evaluate the line integral, we first need to parameterize the curve C. Let's parametrize C using Cartesian coordinates and the parameter t. Simplifying the above expression will give us the numerical result of the line integral.

Step-by-step explanation:

To evaluate the line integral, we first need to parameterize the curve C. Let's parametrize C using Cartesian coordinates and the parameter t. Since C is a circular arc of radius 2 centered at (0,2), we can use the following equations:

x = 2cos(t), y = 2 + 2sin(t), where t ranges from 0 to pi.

Next, let's find the differential of r:

dr = (-2sin(t)dt)i + (2cos(t)dt)j

Now, we substitute the given vector field and dr into the line integral expression:

∫_C ((2xy - z^2)i + (x^2 + 2z)j + (2y - 2xz)k) · dr = ∫_0^pi [(2(2cos(t))(2(2+2sin(t)) - (2+2sin(t))^2) + ((2cos(t))^2 + 2z)(2cos(t)) + (2(2+2sin(t)) - 2(2cos(t))(2cos(t)))((-2sin(t)dt)i + (2cos(t)dt)j)]]

Simplifying the above expression will give us the numerical result of the line integral.

User Dnxit
by
7.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories