Final answer:
Using properties of definite integrals, we combined the given integrals to find ₁₂∫₁₃f(x)dx which turned out to be 0.
Step-by-step explanation:
To find the value of the integral ₁₂∫₁₃f(x)dx, we need to use the properties of definite integrals and the given information. We have:
- ₃₃∫₈f(x)dx = −52
- ₃₃∫₁₂f(x)dx = −23
- ₀∫₁₃f(x)dx = 64
The third integral, ₀∫₁₃f(x)dx, can be broken down into:
₀∫₁₃f(x)dx = ₀∫₃f(x)dx + ₃∫₈f(x)dx + ₈∫₁₂f(x)dx + ₁₂∫₁₃f(x)dx
Since we know the values of the integrals from 3 to 8 and from 3 to 12, we can find the first two parts of this expression:
₀∫₃f(x)dx = ₀∫₁₃f(x)dx - ₃₃∫₈f(x)dx - ₃₃∫₁₂f(x)dx
₀∫₃f(x)dx = 64 - (−52) - (−23) = 64 + 52 + 23
₀∫₃f(x)dx = 139
Finally, to get ₁₂∫₁₃f(x)dx, we subtract all the known parts from the total:
₁₂∫₁₃f(x)dx = ₀∫₁₃f(x)dx - ₀∫₃f(x)dx - ₃₃∫₈f(x)dx - ₈∫₁₂f(x)dx
₁₂∫₁₃f(x)dx = 64 - 139 - (−52) - (−23) = 64 - 139 + 52 + 23
₁₂∫₁₃f(x)dx = 0