Based on the sample data, the 95% confidence interval around the sample mean is approximately (26.07, 27.45).
The Confidence Interval shows the probability that a population parameter lies between two interval values.
Confidence Interval Formula:
![[ \bar{x} \pm Z \left( (s)/(√(n)) \right) ]](https://img.qammunity.org/2024/formulas/mathematics/college/wyh3xtvm36yqpt6ayqws6b4qggzfwgflwk.png)
Where:
= the sample mean
= the critical value for a 95% confidence interval (which is 1.96)
= the sample standard deviation
= the sample size
We need the sample mean and standard deviation to calculate the confidence interval.
Sample Mean
![((\bar{x})): [ \bar{x} = (1)/(N) \sum_(i=1)^(N) x_i ]\[ \bar{x} = (29.7 + 24.5 + \ldots + 26.1)/(35) ] [ \bar{x} = 26.76 ]](https://img.qammunity.org/2024/formulas/mathematics/college/p5gz55bxm5sairovw9yga33uvq00zc2raq.png)
Sample Standard Deviation
![((s)): [ s = \sqrt{(1)/(N-1) \sum_(i=1)^(N) (x_i - \bar{x})^2} ]](https://img.qammunity.org/2024/formulas/mathematics/college/ly7mbqdtki8oel26oz133n4ov6nn2vrtum.png)
![[ s = \sqrt{((29.7-26.76)^2 + (24.5-26.76)^2 + \ldots + (26.1-26.76)^2)/(34)} ]](https://img.qammunity.org/2024/formulas/mathematics/college/jcj9sdf6za0i7va7i7ybfzbyl4ghdliq3b.png)
![[ s = 2.036 ]](https://img.qammunity.org/2024/formulas/mathematics/college/iokqhby2vi9ge15ocpt9nu52ru1f11xif5.png)
Confidence interval:
![[ 26.76 \pm 1.96 \left( (2.036)/(√(35)) \right) ] [ 26.76 \pm 0.689 ]](https://img.qammunity.org/2024/formulas/mathematics/college/dkar5u5tm5mlhqllblglferl9ypatvbh66.png)
Thus, the 95% confidence interval around the sample mean is approximately (26.07, 27.45).