The correct answer is
.
Let's rewrite the expression using the properties of exponents:
![\[ ((2a^4)^2 \cdot a^0 \cdot a^5)/(1) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/w2yjrn1jmj00mofo75kjf6lymrfiu3z2rh.png)
Now, apply the properties of exponents:
![\[ (2^2 \cdot a^(4 * 2) \cdot a^0 \cdot a^5)/(1) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/20wfikec2x22g5jmcsypassfa3zn2qmgui.png)
Simplify the exponents:
![\[ (4 \cdot a^8 \cdot a^0 \cdot a^5)/(1) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/yb1dwadynfdkbt9evfxg13q9y5u06cn23p.png)
![\[ (4 \cdot a^(8+0+5))/(1) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pskijcs87rmz9zh15zyk9nztndbvisb28m.png)
![\[ (4 \cdot a^(13))/(1) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/l3uq99qyssvc75xfxjikypf7e42xutgj3q.png)

Now, substitute
into the expression:
![\[ 4(-5)^(13) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/vzzda3ncx86ewv6gvjci23j07h48w4b7w2.png)
Since the base is raised to an odd power and the base is negative, the result will be negative. Calculate:
![\[ 4(-5)^(13) = 4(-1220703125) = -4882812500 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/gp0kpl577hws8z63opq9qmx5a8dkg9cskt.png)
So, the correct answer is
.
Complete Question: Select the correct answer. Use the properties of exponents to rewrite this expression.
What is the value of the rewritten expression when a=-5 ?
A -250
B. −500
C. -60
D. -20 Reset Next hentum. All rights reserved.