Final answer:
The rate of change, or slope, in this equation is $20 per hour.
Step-by-step explanation:
The rate of change represents how much one variable changes in relation to another variable. In this equation, y = 20x, y represents John's earnings in dollars and cents, and x represents the number of hours he works.
To find the rate of change, we need to determine how much y changes for every change in x. In this case, for every additional hour John works (x increases by 1), his earnings increase by $20 (y increases by 20).
Therefore, the rate of change, or the slope of the equation, is $20 per hour.
The rate of change for the equation y=20x, which represents John's earnings, is $20 per hour, indicating that this is John's constant hourly pay.
The equation y=20x can be interpreted as a linear function where y represents John's earnings for working x hours. To find the rate of change, which represents John's hourly wage, we look at the coefficient of x in the equation. The coefficient is 20, which means John earns $20 per hour. In this context, the rate of change is constant and represents John's hourly pay. This is because the equation is in the form of a straight line, y = mx, where m is the slope and in this situation, the hourly wage.