Final answer:
To rotate a point 90 degrees about the origin, use the rotation formulas x' = x*cos(q) + y*sin(q) and y' = -x*sin(q) + y*cos(q). Substituting the given coordinates (4,3) into these formulas, the new coordinates after rotation are (3, -4).
Step-by-step explanation:
To rotate a point 90 degrees about the origin, we can use the rotation formulas:
x' = x*cos(q) + y*sin(q)
y' = -x*sin(q) + y*cos(q)
In this case, the point S has coordinates (4,3). Substituting these values into the formulas, we get:
x' = 4*cos(90) + 3*sin(90) = 0 + 3 = 3
y' = -4*sin(90) + 3*cos(90) = -4 + 0 = -4
Therefore, the coordinates of S after rotating 90 degrees about the origin are (3, -4).