Final answer:
Yes, there is an integer value of x that satisfies the inequality 6 ≤ 2x + 10 < 16. Upon simplifying, the possible integer values for x are -2, -1, 0, 1, and 2.
Step-by-step explanation:
Is there an integer value of x that satisfies the inequality 6 ≤ 2x + 10 < 16? To solve this, we'll first isolate x in the inequality by subtracting 10 from all parts of the inequality, resulting in -4 ≤ 2x < 6. Then, we'll divide everything by 2 to solve for x, obtaining -2 ≤ x < 3. This means that x can be any integer such that -2 ≤ x < 3. The integer values that satisfy this are -2, -1, 0, 1, and 2, where 2 represents the highest value of x within the range identified by the inequality.