To factorize the expression 1-2sinx+sin^(2)x, we can rewrite it as (1-sin^(2)x) - 2sinx and then factor out common terms.
To factorize the expression 1-2sinx+sin^(2)x, we can rewrite it as (1-sin^(2)x) - 2sinx.
This can be further simplified using the identity a^(2) - b^(2) = (a+b)(a-b). So, (1-sin^(2)x) - 2sinx = (1-sin(x))(1+sin(x)) - 2sinx.
Now, we can factor out common terms:
(1-sin(x))(1+sin(x)) - 2sinx = (1-sin(x))(1+sin(x)) - 2sinx(1-sin(x)) = (1-sin(x))(1+sin(x) - 2sinx).