Final answer:
The inverse function g⁻¹(x) of g(x) = 2x² - 20x + 9 is g⁻¹(x) = 5 ± √(7 + 2x).
Step-by-step explanation:
To find the inverse function, g-1(x), of g(x) = 2x² - 20x + 9, we need to swap the x and y variables and solve for y. So, we have:
x = 2y² - 20y + 9
Let's rearrange the equation to isolate y:
2y² - 20y + 9 - x = 0
We can use the quadratic formula to solve for y:
y = (20 ± √(20² - 4(2)(9-x)))/(2(2))
Now, simplify the expression:
y = (10 ± √(100 - 8(9-x)))/2
y = (10 ± √(100 - 72 + 8x))/2
y = (10 ± √(28 + 8x))/2
y = 5 ± √(7 + 2x)
The inverse function g-1(x) = 5 ± √(7 + 2x)