Final Answer:
The 95 percent confidence interval for Emily's true score on the test is approximately (78.17, 87.83).
Step-by-step explanation:
The confidence interval for Emily's true score can be calculated using the formula:
![\[ \text{CI} = \bar{X}_{\text{est}} \pm t \left((s)/(√(N))\right) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/1hdeo1ct04b5fd97ostknsexgrj1nanwa7.png)
where:
is the mean of the sample scores,
t is the critical t-value based on the degrees of freedom
and desired confidence level,
s is the standard deviation of the sample scores,
N is the sample size.
Given:
![\[ \bar{X}_{\text{est}} = 67.00 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/fea846snb9wj1r5lf49j59mj1f7axfkyet.png)
s = 12.00
N = 126
![\[ r_(xx) = 0.73 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/q3rvt0ljiabg5pa7e3s7rsn1btlrvtf36h.png)
First, we need to find the standard error of the mean SEM :
![\[ SEM = (s)/(√(N)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ms92w9hp4xso4wlnvxeqrnf1h9npvpn6nq.png)
![\[ SEM = (12.00)/(√(126)) \approx 1.071 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/nym2vuay154in87doxelxv7f4ie08m109m.png)
Next, we find the critical t-value for a 95% confidence interval with
. Consulting a t-table or using statistical software, we find
.
Now, substitute these values into the formula:
![\[ \text{CI} = 67.00 \pm 1.980 * 1.071 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/qcq32wfro6d3n56tuzo3vquychyf18nr5o.png)
![\[ \text{CI} \approx (78.17, 87.83) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/xni28hu4t7yfwbuq4oy38t4ztcgk3we7pr.png)
Therefore, we can be 95 percent confident that Emily's true score on the test falls within the interval (78.17, 87.83).