Final answer:
Poisson probabilities can be calculated using the formulas: P(X = k) = poissonpdf(λ, k) and P(X ≤ k) = poissoncdf(λ, k). By substituting the given values of λ and k into these formulas, the probabilities can be easily calculated.
Step-by-step explanation:
1. To find P(X=2) when λ=1.80, we can use the formula: P(X = k) = poissonpdf(λ, k). Plugging in the values, we have P(X=2) = poissonpdf(1.80, 2) ≈ 0.2676
2. P(X=13) when λ=6.50 can be calculated using the same formula: P(X = k) = poissonpdf(λ, k). So, P(X=13) = poissonpdf(6.50, 13) ≈ 0.0136
3. To find P(X<4), we can use the formula: P(X ≤ k) = poissoncdf(λ, k). Substituting in the values, we have P(X<4) = poissoncdf(8.30, 3) ≈ 0.2386
4. To find P(X=0) with λ=2.60, we can use the formula: P(X = k) = poissonpdf(λ, k). Therefore, P(X=0) = poissonpdf(2.60, 0) ≈ 0.0728
5. To calculate P(X<8) when λ=2.90, we can use the formula: P(X ≤ k) = poissoncdf(λ, k). Plugging in the values, we have P(X<8) = poissoncdf(2.90, 7) ≈ 0.7320.