Final Answer
Let's ,substitute the values and calculate:
![\[V = (4.25 \, \text{A})^3\]](https://img.qammunity.org/2024/formulas/physics/high-school/wdtztn33a0qw7cjk0zams3grz48xgdgyda.png)
![\[N = \text{Number of electrons in sodium} = 11 \, \text{(atomic number)}\]](https://img.qammunity.org/2024/formulas/physics/high-school/sicxjge8p5y65e7s6q8gukfqi5hpsorevq.png)
Now, we can use these values in the Fermi energy and Fermi velocity equations to find
and
. Once we have
we can calculate

Step-by-step explanation
To find the Fermi energy
, Fermi velocity
, and Fermi temperature
for sodium, we can use the following relations:
1. **Fermi Energy
:**
![\[E_F = (\hbar^2)/(2m) \left((3\pi^2N)/(V)\right)^(2/3)\]](https://img.qammunity.org/2024/formulas/physics/high-school/ym45n448nwalg5pts0wsk6f8eptei8c77e.png)
where:
-
is the reduced Planck constant

-
is the electron mass

-
is the total number of electrons,
-
is the volume of the crystal.
2. **Fermi Velocity
:**
![\[v_F = (\hbar)/(m) \left((3\pi^2N)/(V)\right)^(1/3)\]](https://img.qammunity.org/2024/formulas/physics/high-school/t3aqkxxutvyci6etf57cv3dqzp3u0otyqn.png)
3. **Fermi Temperature
:**
![\[T_F = (E_F)/(k_B)\]](https://img.qammunity.org/2024/formulas/physics/high-school/gk3mcnjxfedjvqypb0jgddthyfft3tj9ur.png)
where:
-
is the Boltzmann constant

Given the lattice constant
and assuming body-center cubic (BCC) structure, the volume
can be calculated as

Let's substitute the values and calculate:
![\[V = (4.25 \, \text{A})^3\]](https://img.qammunity.org/2024/formulas/physics/high-school/wdtztn33a0qw7cjk0zams3grz48xgdgyda.png)
![\[N = \text{Number of electrons in sodium} = 11 \, \text{(atomic number)}\]](https://img.qammunity.org/2024/formulas/physics/high-school/sicxjge8p5y65e7s6q8gukfqi5hpsorevq.png)
Now, we can use these values in the Fermi energy and Fermi velocity equations to find
and
. Once we have
, we can calculate
