The constant
in the particle's position equation
,
+
is determined by differentiating the position function to find acceleration
, then using
with the given force information at
. Solving for
yields
.
Let's follow the hint and find the constant
.
1. Given position function

2. Differentiate
with respect to time
to get velocity
![\[ v(t) = (dx)/(dt) = 5.0 + 2ct - 18.0t^2 \]](https://img.qammunity.org/2024/formulas/physics/high-school/fqag43c5vykw5g91ntk3i7kn6517u3sf7v.png)
3. Differentiate
to get acceleration
:
![\[ a(t) = (dv)/(dt) = 2c - 36.0t \]](https://img.qammunity.org/2024/formulas/physics/high-school/sfjg851c9kongl24xbc2b3xjj20za6qd6n.png)
4. At
, the force
is given by
, where
is the mass of the particle and
is the acceleration.
![\[ F = 4.0 \, \text{kg} \cdot a(3.0) = 30 \, \text{N} \]](https://img.qammunity.org/2024/formulas/physics/high-school/on5q7y7d6udhla6cvfsw5qtf0lplgp8zr9.png)
![\[ 30 \, \text{N} = 4.0 \, \text{kg} \cdot (2c - 36.0 \cdot 3.0) \]](https://img.qammunity.org/2024/formulas/physics/high-school/qfnb2p8jt6rv4vmfimfosupw84r0nwwyk1.png)
Now, solve for
:
![\[ 30 \, \text{N} = 4.0 \, \text{kg} \cdot (2c - 108.0) \]](https://img.qammunity.org/2024/formulas/physics/high-school/ocsj2rav17lwra180iisjgx2yzktivokof.png)
![\[ 30 \, \text{N} = 8c - 432.0 \, \text{N} \cdot \text{s}^2/\text{m} \]](https://img.qammunity.org/2024/formulas/physics/high-school/yw2p9t8tpfenvnrdp75v78b0n9sl5k2fam.png)
![\[ 8c = 462.0 \, \text{N} \cdot \text{s}^2/\text{m} \]](https://img.qammunity.org/2024/formulas/physics/high-school/guyymndookqtt81dux8r3krcj5eb1j6q1c.png)
![\[ c = 57.75 \, \text{N/m}^2 \]](https://img.qammunity.org/2024/formulas/physics/high-school/pf0pv1f6ks56gcm3n3dij1nlst6cmhbg6b.png)
Therefore, the value of
is
.