125k views
4 votes
Volunteers are driving 100 students to the championship baseball game the 22 volunteer drivers either have cars which can seat 4 students or vans which can seat 6 students, ensuring that no students are left behind, and what would be the optimal combination of cars and vans to achieve this?

User Lourenco
by
7.1k points

1 Answer

4 votes

Final answer:

To determine the optimal combination of cars and vans to transport the students, we can solve a system of equations using the given information.

Step-by-step explanation:

First, let's find the number of students that can be accommodated by the cars and vans:

The number of cars = 4 * Number of volunteer drivers with cars

The number of vans = 6 * Number of volunteer drivers with vans

Let's assume there are x volunteer drivers with cars and y volunteer drivers with vans.

Given that there are 22 volunteer drivers and 100 students that need to be transported, we can write two equations:

x + y = 22 (Equation 1)

4x + 6y = 100 (Equation 2)

By solving these two equations, we can find the values of x and y, which represent the number of volunteer drivers with cars and vans respectively.

Once we have the values of x and y, we can determine the optimal combination of cars and vans to transport the students.

For example, if x = 10 and y = 12, then we would need 10 cars and 12 vans to transport the students.

User Mesutozer
by
6.8k points