Final answer:
To simplify the expressions using the definition, identities, and properties of imaginary numbers, we can follow the rules for multiplying and raising imaginary numbers to a power. Applying these rules, expression 1 simplifies to -1, expression 2 simplifies to i^15 - i^3, expression 3 simplifies to i^11, and expression 4 simplifies to -i^11.
Step-by-step explanation:
To simplify these expressions using the definition, identities, and properties of imaginary numbers, we can apply the following rules:
-
- When multiplying imaginary numbers, $i^m \cdot i^n = i^{m+n}$.
For example, $i^3 \cdot i^5 = i^{3+5} = i^8$
-
- When raising an imaginary number to a power, $(i^n)^m = i^{n \cdot m}$
For example, $(i^3)^5 = i^{3 \cdot 5} = i^{15}$
-
- $i^{4k} = 1$, where $k$ is any integer.
For example, $i^{4 \cdot 2} = i^8 = 1$
-
- $i^0 =1$
Now let's simplify each expression:
-
- $-i^6 \cdot i^3 \cdot i^{-5} = -i^{6+3-5} = -i^4 = -1$
-
- $(i^3)^5 - i^3 = i^{3 \cdot 5} - i^3 = i^{15} - i^3$
-
- $i^5 \cdot i^{-2} \cdot i^8 = i^{5+(-2)+8} = i^{11}$
-
- $-i^4 \cdot i^0 \cdot i^7 = -i^{4+0+7} = -i^{11}$